4 resultados para Biological Assay

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric CO2 partial pressure (pCO2) is expected to increase to 700 µatm or more by the end of the present century. Anthropogenic CO2 is absorbed by the oceans, leading to decreases in pH and the CaCO3 saturation state of the seawater. Elevated pCO2 was shown to drastically decrease calcification rates in tropical zooxanthellate corals. Here we show, using the Mediterranean zooxanthellate coral Cladocora caespitosa, that an increase in pCO2, in the range predicted for 2100, does not reduce its calcification rate. Therefore, the conventional belief that calcification rates will be affected by ocean acidification may not be widespread in temperate corals. Seasonal change in temperature is the predominant factor controlling photosynthesis, respiration, calcification and symbiont density. An increase in pCO2, alone or in combination with elevated temperature, had no significant effect on photosynthesis, photosynthetic efficiency and calcification. The lack of sensitivity C. caespitosa to elevated pCO2 might be due to its slow growth rates, which seem to be more dependent on temperature than on the saturation state of calcium carbonate in the range projected for the end of the century.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aggregation of algae, mainly diatoms, is an important process in marine systems leading to the settling of particulate organic carbon predominantly in the form of marine snow. Exudation products of phytoplankton form transparent exopolymer particles (TEP), which acts as the glue for particle aggregation. Heterotrophic bacteria interacting with phytoplankton may influence TEP formation and phytoplankton aggregation. This bacterial impact has not been explored in detail. We hypothesized that bacteria attaching to Thalassiosira weissflogii might interact in a yet-to-be determined manner, which could impact TEP formation and aggregate abundance. The role of individual T. weissflogii-attaching and free-living new bacterial isolates for TEP production and diatom aggregation was investigated in vitro. T. weissflogii did not aggregate in axenic culture, and striking differences in aggregation dynamics and TEP abundance were observed when diatom cultures were inoculated with either diatom-attaching or free-living bacteria. The data indicated that free-living bacteria might not influence aggregation whereas bacteria attaching to diatom cells may increase aggregate formation. Interestingly, photosynthetically inactivated T. weissflogii cells did not aggregate regardless of the presence of bacteria. Comparison of aggregate formation, TEP production, aggregate sinking velocity and solid hydrated density revealed remarkable differences. Both, photosynthetically active T. weissflogii and specific diatom-attaching bacteria were required for aggregation. It was concluded that interactions between heterotrophic bacteria and diatoms increased aggregate formation and particle sinking and thus may enhance the efficiency of the biological pump.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature has a profound effect on the species composition and physiology of marine phytoplankton, a polyphyletic group of microbes responsible for half of global primary production. Here, we ask whether and how thermal reaction norms in a key calcifying species, the coccolithophore Emiliania huxleyi, change as a result of 2.5 years of experimental evolution to a temperature about 2°C below its upper thermal limit. Replicate experimental populations derived from a single genotype isolated from Norwegian coastal waters were grown at two temperatures for 2.5 years before assessing thermal responses at 6 temperatures ranging from 15 to 26°C, with pCO2 (400/1100/2200 ?atm) as a fully factorial additional factor. The two selection temperatures (15°/26.3°C) led to a marked divergence of thermal reaction norms. Optimal growth temperatures were 0.7°C higher in experimental populations selected at 26.3°C than those selected at 15.0°C. An additional negative effect of high pCO2 on maximal growth rate (8% decrease relative to lowest level) was observed. Finally, the maximum persistence temperature (Tmax) differed by 1-3°C between experimental treatments, as a result of an interaction between pCO2 and the temperature selection. Taken together, we demonstrate that several attributes of thermal reaction norms in phytoplankton may change faster than the predicted progression of ocean warming.